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ABSTRACT 

A graph X is called a graphical regular representation (GRR) of a group ~ if 
the automorphism group of X is regular and isomorphic to cg. Watkins and 
Nowitz have shown that the direct product f~ • Jt ~ of two finite groups ~ and 
~ h a s  a GRR if both factors have a GRR and if at least one factor is differ- 
ent from the cyclic group of order two. We give a new proof of this result, 
thereby removing the restriction to finite groups. We further show that the 
complement X' of a finite or infinite graph X is prime with respect to cartesian 
multiplication if X is composite and not one of six exceptional graphs. 

A graph X is called a graphical regular representation (GRR) of a group ~,  if 

the automorphism group ~(X) of X is regular and isomorphic to c~. Watkins [6] 

has shown that the direct product f9 x ~r of two finite groups fr and . ~  has a 

GRR if  each factor has a GRR and if both factors are different from the cyclic 

group c~ 2 of order two. As c~ 2 x c~ 2 has no GRR, one cannot let both factors be 

isomorphic to c~2, but if only one factor is a W2 the theorem still holds (Watkins 

and Nowitz [5]). The aim of this paper is to remove the restriction to finite groups. 

The theorem that fr x E 2 has a GRR if the finite or infinite group f# is different 

from T2 and has a GRR is an immediate consequence of the following: I f  the 

finite or infinite graph X is composite with respect to cartesian multiplication its 

complement X '  is prime, unless X is one of six exceptional graphs. 

We only consider simple graphs. The vertex set of a graph X will be denoted by 

V(X) and the set of edges by E(X). We consider the edges to be unordered pairs 

[a, b] of different vertices of X. With [ X I we denote the number of vertices in X 

and with l E(X) I the number of edges. Further, we will use the symbol []  for the 

empty graph and Cn for the complete graph on n vertices. The complement C', of 
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C, is called the totally disconnected graph D,. Cx is called the trivial graph. We 

say X is nontrivial if it has at least two vertices. 

A permutation ( of V(X) is an automorphism of X, if [(x, (y] ~ E(X) if and 

only if [x,y]  e E(X). The automorphism group of X will be denoted by fg(X). 

If there exists exactly one automorphism to every pair x, y ~ V(X) mapping x into 

y, ~(X) is called regular. 

Let A be a subset of V(X). We define a graph S(A) on A by connecting two 

vertices in A if and only if they are connected in X. S(A) is said to be spanned 

by A. We will only consider such subgraphs of X which are spanned by some 

subset of V(X). 

If  X and Y are graphs X - Y  is defined on the graph spanned by 

V(X) - V(Y). A subgraph Yof X is called externally related [1] if every vertex of 

X - Yis either connected with all vertices of Y or with none. 

The union X u Y of two graphs is defined by V(X u Y) = V(X) u V(Y) and 

E(X u Y) = E(X) ~d E(Y). Analogously, we define X • Y. It is easily seen that 

the union of externally related subgraphs with nonempty intersection is externally 

related and that their intersection is externally related. 

The automorphism group of a graph is not regular, i fX has a nontrivial proper 

subgraph Y with nontrivial automorphism group. 

The cartesian product X x Y of the graphs X and Yis defined on the cartesian 

product V(X)x  V(Y) of their sets of vertices by [(xl, Y0, (x2,y2)]eE(X x Y) 

if xl = x2 and [Yl, Y2] ~ E(Y), or if [Xx, x2] e E(X) and y~ = Y2. The projection Px 

maps every vertex (x ,y)~V(X x Y) into x and Pr maps (x,y) into y. If 

(a,b)~ V(X • Y) we define the X-layer X ("'b) of X • Y as the subgraph of 

V(X x Y) spanned by the set {(x,b)]x ~ V(X)}. Analogously, we define y(a,b). 

Clearly Px maps X ~a'b~ isomorphically onto X as Pr maps the layer Y (a,b~ onto Y. 

Cartesian multiplication is an associative, commutative operation with unity, 

namely the trivial graph. It is distributive with respect to the sum of graphs, if 

we define the sum X + Y as the union of disjoint graphs. 

A graph is called composite with respect to cartesian multiplication if it is the 

product of nontrivial graphs. A nontrivial graph which is not composite is prime. 

In [2] it has been shown that the product X • Y of finite or infinite connected 

prime graphs has a regular automorphism group if and only if X and Y are 

nonisomorphic and have regular automorphism groups. 

THEOREM l. The only composite graphs in the class of all finite and infinite 
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graphs whose complement is not prime with respect to cartesian multiplication 

are C2 x C2, C2 x D2;  C 2 • C 2 • C2, C 2 • C4; C 3 • C a and C2 x K, where K 

arises from C4 by deletion of an edge. 

PROOF. Let ( be an isomorphism from (A x B)' to C x D, where A, B, C, D are 

nontrivial graphs. We consider the case first, when at least one factor, say A, has 

more than four vertices. Then one factor of C x D, say C, has at least three 

vertices. If B consists only of two vert,.'ces u, v we consider (-x C g for a C-layer C g 

of C • D. There is an A-layer in A x B with which (-1 C g has at least two vertices 

in common. Suppose (x, u) and (y, u) are in ( -  1 C g. In (A x B)' the vertex (z, v) is 

connected with (x, u), (y, u) for any z in A different from x and y. Thus, ((z, v) 

is in C g for any such z. Let r,s be two vertices in A different from x,y  and z. 

Then (z, u) is connected with (r, v) and (s, v) in (A • B)', which implies that ( (z, u) 

is also in C g. Finally, (x, v) is connected in (A x B)' with (y, u), (z, u), and (y, v) 

with (x, u), (z, u) for any z in A different from x and y. Thus, (x, v) and (y, v) are 

also in C g and D is trivial. 

Now let B have at least three vertices. We choose a vertex u in B and two 

arbitrary others, say v and w. Further let x, y, z and t be four vertices in A. Then 

the vertices (x, u), (z, v), (t, w) form a triangle and are mapped by ( into a layer 

of C x D with respect to one of the factors. Let ( map this triangle into the layer 

C h. As (y, u) is connected with (z, v) and (t, w) in (A x B)', ((y, u) also is in C h. 

As before, one concludes now that ( maps A (x'") and A (~'v) into C ~'. As v was 

arbitrary, ~ maps every A-layer of A x B, and hence A x B, into C h, which means 

that D is trivial. 

We can restrict ourselves to the case now where all factors have at most four 

vertices. The number of edges in A x B added to the number of edges in C x D 

is the number of edges in the complete graph on [A x B[ vertices. Denoting the 

number of vertices in A,B, C,D with a, b, c, d we therefore have: 

(1) b.IE(A) I + a.IE(B) I + d.IE(C)I + c.]E(D)I = �89 - 1). 

Using the fact that [ E(X)] -<_ �89 �9 x ( x -  1) for any graph X on x vertices we arrive 

at the following inequality: 

(2) a + b + c + d > = a b + 3 .  

We can assume without loss of generality that 

(3) 4 > a > c > d > _ b > - 2 .  
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Thus 4a > ab + 3, which implies 2 < b < 3. I f  b = 3 we have c + d_>_ 2a by (2) 

and 2a ~ c + d by (3). Therefore, a = c = d, and since ab = cd all constants are 

equal to three. In this case equality holds in (2) and A, B, C, D have to be complete. 

It  is readily verified that C a x C3 is indeed isomorphic to its complement. 

I f  b = 2  Eq. (2)gives c + d  > a + l ,  wherefrom follows 2c > a + 1, 

4 c > 2 a  + 2 = cd + 2 and c(4 - d) ~_ 2. Thus 2 < d < 3. 

Now let b = 2 and d = 3. Then (3) implies 4 > c > 3. By 2a = 3c the number c 

has to be even. So c cannot be three. But it cannot be four either, because then a 

would be equal to six. 

I f  b and d are two, we have a = c by ab = cd. I f  both graphs B and D do not 

have an edge (1) cannot be satisfied. I f  one of these graphs has an edge, but not 

the other, (1) can only be satisfied if all the other graphs are complete. Let B ~ D2. 

Then we have 

( C  a • D2) '  ~ C a x C2, 

which can only hold if a = 2. For  if  a > 2 the graph Ca x C2 would contain a 

triangle, but (Ca x D2)' does not contain any triangles. This gives the solutions 

C2 x C 2 and C2 • D2. Let B - D _~ C2. Then (1) implies 

(4) I E(A) I + [ E(C)i = a(a - 1). 

I f  a = 4 the graphs A and C have at most six edges. By (4) one of these graphs, 

say C has to contain at least five edges. I f  C has five edges A also has five edges, 

and both graphs arise from C4 by deletion of an edge. We call this graph K, and 

get the solution 

(K x C2) '  ~ K x C 2. 

I f  C has six edges it is complete and A has only four edges. There are no triangles 

in (C x D)' and henceforth none in A x B or A. Thus A is a quadrangle C2 x C 2 

and one readily verifies 

((C2 • C2) x C~)' =~ CA • C2. 

For  a = 3 Eq. (4) cannot be satisfied because a is odd. The case a = 2 gives 

A ~ D2, C ~- C2 or A ~ C2, C ~ D2, a solution we already have. 

THEOREM 2. I f  the f ini te  or infinite group ff has a GRR and i f  ff ~ c~2, then 

the group ff • c#2 also has a GRR.  

PRoof. Let X be a GRR of ft. Since X and X '  have the same group and none 
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of the exceptional graphs in Theorem 1 has a regular group we can assume X to be 

prime. As (r # cg 2 the graphs X and C2 are not isomorphic. Thus, X x C2 is a 

GRR of ff x (g2. 

The preceding p roo f  is based on the same idea as the proof  of  Watkins and 

Nowitz [5] for the finite case. Where the cited proof uses the observation that 

the complement X'  of a finite graph X is relatively prime to C2 if X is a GRR 

and admits a C2 as a factor, we use the stronger result of Theorem 1. 

We remark that c~ has a GRR for all n ~ 2, 3, 4, as has been proved in [4]. 

In [3] it has been remarked that the weak product r also has a GRR for any 

infinite cardinal 09. 

DEFINITION. [6] The product X"  Y of the graphs X and Y is defined on 

V(X) x V(Y) by [(xl,  Yl), (x2, Y2)] E E(X" Y) if Xl = x 2 and [Yl, Y2] e E(Y), or 

if [x~, x2] e E(X) and Yl ~ Y2. 

All the Y-layers of X �9 Yare mapped isomorphically into Yby the projection py 

and all X-layers are totally disconnected. If  b is a vertex not in ya it is either 

disconnected with all vertices of ya or connected with all but one. In general this 

product is neither commutative nor associative. 

THEOREM 3. eft(X" Y) = f~(X) • if(Y) i f X  and Yhave more than two vertices 

and regular groups. 

PROOF. Let ( be an automorphism o f X  �9 Yand ya a Y-layer of X -  Y. Consider 

the graph Z spanned by the projection pxV(~Y ~) of V((Y a) into X. I f  Z is not 

externally related in X, there exist vertices x ~ V(X - Z) and s, t e V(Z) such that 

x is connected with s, but not with t. Let (s,u) be a vertex in (Ya and v a vertex 

in Y different from u. Then (x, v) is connected with all but one of the vertices in 

(ya,  and this one has to be a vertex whose projection into X is t. Let (t, w) be this 

vertex. Obviously, it is the only vertex in y(t,~,)which is in (Y~. If  (p, q) is any 

vertex in ~Y~ with p ~ t  it has to be connected with (x,v) and therefore 

Ix, p] e E(X). If  q ~ u the vertex (x, q) is connected with (s, u) but not with (t, w) 

and (p, q), which is not possible because the last three vertices are in (Y". Thus, 

(Y~ consists of the vertex (t,w) and the vertices (r ,u)  with re  V ( Z ) -  {t}. This 

means that all vertices of (ya except possibly (t,w) are in the layer X (s'~) and 

(Y~ is totally disconnected or all edges are incident with (t, w), in contradiction to 

the regularity of if(Y). Thus Z is externally related. 

A regular graph on at least three vertices is connected. Therefore, there has to 

exist a vertex x in X - Z which is connected with a vertex s in Z if X ~ Z. If Z 
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contains at least one additional vertex t besides s we show that it is not possible 

that ya is equal to Z" Y. Suppose (ya  is equal to Z"  Yand let u,v be any two 

vertices in Y. Then (x, v) is connected with (s, u) but not with (s, v) and (t, v), which 

is not possible, because (x, v) has to be connected with all but one of the vertices 

in ~Ya = Z .  Y. 

If  Z = X it is also not possible that ~Ya = Z -  Y, since (ya  is a proper subgraph 

of X �9 Y and cannot be mapped onto X �9 Y by the automorphism (. 

In case Z is not complete, there are two nonadjacent vertices, say s, t in Z. 

We want to show that at least one of the layers y(s.~) and yu.,) for u E Ycontains 

a vertex which is not in (Y". In order to do that, we take a vertex (r, v) in Z .  Y -  ~ Y~. 

As y(, ,o is connected and Yt"~ n ~ Y " #  Vq, we can assume that (r,v) is adjacent 

to a vertex in Y ~"~ ~Y", and hence with all but one of the vertices in ~Y". If  r is 

equal to s or t we are through, if not, we observe that (r,v) is not adjacent to 

(s,v) and (t, v); and therefore, at least one of these vertices, say (s,v) has to be in 

z . Y - ~ Y " .  
As y~s.,)# y ~ . , ) n ~ y a #  D, we can find by the connectedness of Y~'") a 

vertex b in Yr - ~ya which is adjacent to a vertex c in Yt*'") n (Ya. The vertex b 

is therefore connected with all vertices in ~Y~ but one, say d. Since there are no 

edges between yW,) and Y~t'~) the vertex d has to be in ye,,), and it is the only 

vertex of ~Y~ in this Y-layer. Clearly, s is adjacent to any vertex z in Z other than s 

or t. Let e be a neighbor of d in yet,,). Then e is not in (Y" and adjacent to all but 

one of the vertices of (YL This vertex must be c, and clearly t is adjacent to any 

vertex z in Z other than s or t. The transposition of s and t is therefore a nontrivial 

automorphism of  Z which fixes at least one vertex of Z. Since Z is externally 

related, it is also an automorphism of X, in contradiction to the regularity of 

~(X). 

We have thus shown that Z is complete, and as Z is externally related and 

f~(X) regular, Z has to be trivial. This means that ~ maps every Y-layer into a 

Y-layer. The mapping ~-1 is also an automorphism and has the same property; 

hence, ~ maps every Y-layer onto a Y-layer. 

To complete the proof, it remains to be shown that ~ also maps every X-layer 

onto an X-layer. By the connectedness of X, it suffices to show that for arbitrary 

u ~ Y py~(t, u) = p,~(s, u), if Is, t'l ~ E(X). I f  Is, t-[ ~ E(X) the vertex (s, u) is con- 

nected with all vertices of Y(' '"~ except (t, u). Therefore (s, u) is connected with all 

vertices of 
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~y(~,u) = y~(t,u) 

except ~(t, u). Thus ~(s, u) and ~(t, u) have the same Y-components. 

THEOREM 4. Let ~ and ~ be f ini te  or infinite groups with GRR.  lJ not both 

are isomorphic to c~ 2 the group f~ x ~ also has a GRR. 

PROOF. I f  ~ and ~ are different f rom c~ 2 this is an immediate  consequence of  

Theorem 3 as the direct product  of  regular groups is regular. I f  one o f  the groups 

is a c~ 2 we get a G R R  of  f# • v~ by Theorem 2. 
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